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are substituted in the following local energy flux expressions : = @W&)(7’,- T,)fl.5d;(0.2A2-A3/6 

(- J,IL),=, = (pu,/W’u - T,)Il.% (3/2OA +3A4/70)+d;(-0.6A+3A2/8-3A.‘/35) 

-31/42OA’)+d;(-3/8+3/4OA’ -3/280A4) +(nd,/.x)(-0.3A+A2/8-3A3/140) 

+(nd,/x)( -3/8+0.25/A-3/408* +0.5(&/x)(-0.2A+A2/12 

+ l/280A4)+0.5(d,/x)(-0.25+0.2/A* -A3/70)] (P > 1) 

- 17/21OA’)] (P $ 1) (A4) and the local heat transfer is computed. 
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‘I. INTRODUCTION formations and initial conditions : 

THE LAMINAR flow situation that is our concern here is zero 
pressure gradient and unity Prandtl number fluid flow over 
a semi-infinite plate of uniform temperature. For the flow 
under consideration, Meksyn [I] presented series solutions of 
the governing momentum and energy equations ; the relevant 
equations and boundary conditions are 

f”’ +ff” = 0 (1) 

8” +f0’ = 0 (2) 

f(0) = f’(0) = 0 ; f’(m) --* 1 (3) 

6(O) = 1 ; @(cm) -P 0. (4) 

Here f and 9 denote the non-dimensional stream-function 
and temperature, respectively ; primes denote derivatives 
with respect to y. In brief, Meksyn uses the Blasius series 

f= &4&r? = ~(~v2/2!)-u~(~‘/5!~ 

+lla3(y8/8!)-375a4(y”/ll!)f27897aS(y’4/14!)... (5) 

where A, are the coefficients and f”(0) = a, to integrate 
equations (1) and (2). The end result is that the temperature 
distribution is a combination of two series: one being in 
terms of the incomplete gamma function and the other for 
0’(O). The series for W(0) is given by 

0’(O) = -0.478/[1+ l/45- l/405.. .I. (6) 

Y = r/s, F= sx a = l/s’, (de/dy)~=~ = c (say). (7) 

The initial value problems to be solved are 

F”‘+FF”=O (8) 

6”+ FW = 0 (9) 

F(O) = F’(0) = 0, F”(0) = 1 (10) 

0(O) = 1, 0’(O) = cs = b (say). (11) 

Here (and in what follows) primes denote derivatives with 
respect to Y. The parameters s and b are to be estimated 
satisfying the conditions that F’(Y) -+ sz and B(Y) -+ 0 as 
Y-CO. 

Using Maclaurin’s series expansion one obtains from 
equations (8).--( 1 I) 

F= (Y’~2!)-(Ys/5!)+ll(Y8/8!)-375(Y”~ll!) 

+27897(Y’4/14!)-...+RU (12) 

8= l+bY-b(Y4/4!)+llb(Y7/7!)-375b(Y’c,’10!) 

+27897b(Y”/13!)..,+Rp. (13) 

Here R, and RP denote the remainders. Comparing series 
(12) and (5), we note that they differ by the scaling factors 
introduced in equations (7). 

For the flow under consideration, the Reynolds analogy 
suggests that skin-friction is a direct measure of wall heat 
transfer rate (21. However, relation (6) does not lead to this 
explicit relation. It appears that only the functional analysis 
of the Reynolds analogy between momentum and heat trans- 
fer can provide such an explicit relation. Also, it appears (to 
the author’s knowledge) that no attempt was made in the 
past to arrive at this explicit relation using series solutions 
of equations (l)(4). The aim of this note is to show that the 
series solutions of equations (l>-(4) can be used to develop 
this explicit relation between the skin-friction and wall heat 
transfer rate. 

Recently, Torok and Advani [3] have shown that a series 
solution to a non-linear initial value problem can be obtained 
via infmitesimal generators. Expressing equations (8) and 
(10) as three first-order differential equations (for the sake 
of brevity, details are not given here), one obtains series (12). 
In this case, this series represents a continuous group of 
transfo~ations parameterized by Y. Given a point on a 
trajectory, which is an invariant curve of the transfo~ation 
group 131, a point is mapped onto another along the tra- 
jectory as Y advances. This possibly implies that series (12) 
is not only true for small Y [2,4], but for all Y. 

2. ANALYSIS 

For the sake of convenience, we convert equations (lt(4) 
into initial value problems using the following trans- 

However, series (12) does not appear to converge so easily 
in the sense that F’ (obtained from series (12)) does not attain 
its asymptotic values as Y + co. Shank’s transformation [5] 
applied to only five terms of the series appears to accelerate 
the convergence rate; e.g. from Table 1 (this table contains 
the results for Y = 3 and 6) we see that at Y = 6, repeated 
use of this transformation drastically reduces the F’ value 
from 52 826 (= S,) to 2.07! Noting the observation of Van 
Dyke [6] that at least 15 terms are required to obtain the 
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NOMENCLATURE 

a value of the non-dimensional wall shear s constant, relation (7) 

? 
coefficients, series (5) %n partial sum of the series 
constant, relation (11) Y non-dimensional coordinate 

C value of the non-dimensional wall heat Y scaled value of y. 
transfer rate 

i 

Skank’s transfo~ation value 
non-dimensional stream function Greek symbol 

scaled value off, relation (7) 6 non-dimensional tem~rature. 

m number of terms considered in the Shank’s 
transformation Superscript 

N number of terms, relation (5) derivative. 
RICII RP remainders of Maclurin’s series, relations (12) 

and (13) 

Table 1. Results of Shank’s transformation [5] applied to the Y+ m. Now, as Y + co, F’(Y) +s’, as discussed earlier, 
series for F’ (obtained from series (12)) for large Y the condition that 0(Y) + 0 can be satisfied if 

b= -l/s*; or c= --a. (15) 

3 1 
2 
3 
4 
5 

6 1 
2 
3 
4 
5 

3.0 
-0.375 1.6 

4.39 1.72 1.658 
-1.7 1.58 

5.44 

6.0 
-48.0 1.61 
563.0 6.42 2.07 

-5685.0 -39.8 
52 826.0 

Here m and s, denote the number of terms and partial sum, 
respectively; e,(s,) = (r_+ ,s,_ ,-2,) (s,+, +s,_ , -2s,)-’ ; 
4 = et@&&. 

correct radius of convergence of series (5), the conclusion 
that becomes obvious at this stage is that such a trans- 
formation applied to a large number of terms will ensure 
that F’(Y) -+ sz as Y + co. This in turn will enable us to 
estimate s2 accurately ; however, no such attempt was made 
as this is not the aim of this note. We may note that the 
numerical solution of equations (8) and (11) gives s2 = 1.65 
for Y 2 3. In the light of the above discussion, an asymptotic 
expansion for F was not considered. 

From series (12) and (13), one obtains the temperature 
distribution 

f?= 1fbF’. (14) 

This relation suggests that the temperature is linearly pro- 
portional to F’, the boundary layer streamwise velocity ; this 
is expected for it is known that the thermal boundary layer 
thickness must be equal to the velocity boundary layer thick- 
ness. 

As mentioned earlier, the constant b appearing in equation 
(14) is to be estimated satisfying the condition that 6 + 0 as 

This explicit relation shows that the wall heat transfer rate 
is directly given by the wall shear stress-a weB~tablish~ 
result from the Reynolds analogy. At this stage we can con- 
clude that the series solutions of equations (lH4) also lead 
to an explicit relation between the skin-friction and wall heat 
transfer. 

Further, although relations (6) and (15) are based on the 
series solutions of equations (l)-(4), relation (15) appears to 
be simpler than relation (6). 

3. CONCLUSION 

To sum up, we can say that for the flow under consider- 
ation, series solutions also provide an explicit relation, which 
otherwise follows only from the functional analysis, between 
the skin-friction and wall heat transfer rate. 

~c~~owZe~@erne~r-The author wishes to thank Dr U. N. 
Sinha (NAL) and Mr P. K. Das (Aero. Engng Dept.) for 
many helpful discussions. 

REFERENCES 

1. D. Meksyn, New Methods in Laminar Boundary Layer 
Theory, pp. 66, 159, 160. Pergamon Press, Oxford (1961). 

2. H. Schlichting, Boundary Layer Theory, 6th Edn, p. 270. 
McGraw-Hill, New York (1968). 

3. J. S. Torok and S. H. Advani, Continuous transformation 
groups and series solution of initial value problems, Znt. 
J. Non-linear Mech. 20,283-289 (1985). 

4. S. Richardson, On Blasins’s equation governing flow in 
the boundary layer on a flat pfate, Proc. Camb. Phil. Sot. 
74, 179-184 (1973). 

5. M. Van Dyke, Perturbation methods in Fluid Mech~~~s, 
p. 202. Academic Press, New York (1964). 

6. M. Van Dyke, Analysis and improvement of perturbation 
series, Q. J. Mech. Appl. Math. 28,423450 (1974). 


